#### **Towards fault-tolerant quantum computation with** superconducting qubits

Mazyar Mirrahimi Quantic team (Inria Paris, ENS Paris, Mines ParisTech, CNRS)

#### Quantic team Philippe Campagne-Ibarcq (Exp.) Zaki Leghtas (Exp.) Alex Petrescu (Th.) Pierre Rouchon (Th.) Alain Sarlette (Th.) Antoine Tilloy (Th.)

#### Postdoc/PhD

Thiziri Aissaoui Adrien Bocquet Alvise Borgognoni Leon Carde Linda Greggio Pierre Guilmin



Edoardo Lauria Louis Paletta F.-M. Le Régent Vincent Lienhard Ulysse Réglade Angela Riva Rémi Robin Erwan Roverch

Emilio Rui Diego Ruiz Lev-Arcady Sellem Karanabir Tiwana Aron Vanselow Marius Villiers





### Quantum hardware is (too) noisy



# $\frac{\text{Classical RAM (Random Access Memory)}}{\sim 10^{-25} \text{ errors per bit per operation}}$



# $\frac{\text{Quantum processor}}{\sim 10^{-3} - 10^{-4} \text{ errors per bit per operation}}$

Large scale quantum computation requires  $\sim 10^{-10} - 10^{-15}$ 

## **Delocalization provides protection**

- High rate errors are caused by **local** physical processes
- Encoding the information in **non-local** degrees of freedom protects it

#### Surface code

 $X_L = \text{all } X \text{ along horizontal direction}$  $Z_{I} = \text{all } Z \text{ along vertical direction}$ 



« logical » qubit





O data qubit

syndrome measurement qubit

« physical » qubits

A. Fowler et al., Phys. Rev. A 86, 2012.



#### At the cost of increased physical resource





Figures borrowed from A. Fowler et al., Phys. Rev. A 86, 2012.





# **State of progress**



Suppressing quantum errors by scaling a surface logical qubit, Google Quanton AI, Nature, 2023.

**Short term bottleneck:** fast high-fidelity measurements



#### Google roadmap



## **Possible shortcuts: better building blocks**

#### Fluxonium



(c) $E_J$ 

Manucharyan, Devoret et al., Science 2009 Nguyen, Manucharyan et al., PRX 2019

#### Protected qubits



 $0-\pi$  qubit



Brooks, Kitaev, Preskill, PRA 2013

Douçot and Vidal, PRL 2002 Smith, Devoret et al., npj Quantum Inf., 2020



### **Possible shortcuts: better codes**

A bi-planar LDPC (Low-Density Parity-Check) code [[n=144,k=12,d=12]]

- Perspective of implementation with flip-chip technology
- Challenge of long-range interactions
- Limited capability for faulttolerant logical gate implementations



High-threshold and low-overhead quantum memory (Theory proposal), IBM, 2023.





#### **Possible shortcuts: low-level QEC with bosonic codes**



D. Gottesman, A. Kitaev, J. Preskill, Phys. Rev. A 64, 2001.

P.T. Cochrane et al., Phys. Rev. A 59, 1999. Z. Leghtas et al., Phys. Rev. Lett. 111, 2013.

#### Low-level QEC with bosonic codes: break-even GKP encoding



Re ( $\alpha$ ) /  $\sqrt{\pi/2}$ 



Sivak, Devoret et al., Yale Univ., Nature 2022.



#### **Possible shortcuts: Autonomous QEC by dissipation engineering**

« Single-photon » driven-damped harmonic oscillator

$$H = \epsilon_1^* \hat{a} + \epsilon_1 \hat{a}^{\dagger} \quad \text{and} \quad L = \sqrt{\kappa_1} \hat{a}$$
$$\frac{d\rho}{dt} = -i[H,\rho] + L\rho L^{\dagger} - \frac{1}{2}L^{\dagger}L\rho - \frac{1}{2}\rho L^{\dagger}L$$

$$\equiv L = \sqrt{\kappa_1}(\hat{a} - \alpha)$$

« Two-photon » driven-damped harmonic oscillator

$$H = \epsilon_2^* \hat{a}^2 + \epsilon_2 \hat{a}^{\dagger 2} \quad \text{and} \quad L = \sqrt{\kappa_2} \hat{a}^2$$
$$\equiv L = \sqrt{\kappa_2} (\hat{a}^2 - \alpha^2)$$









 $\{ |\alpha\rangle, |-\alpha\rangle \}$  $\alpha = \pm \sqrt{-2i\varepsilon_2 / \kappa_2}$ 





#### The two-photon exchange

$$\omega_p = 2\omega_a - \omega_d$$



### Cat-qubits: exponential protection against bit-flips

Cat-qubits are exponentially error-biased qubits

![](_page_12_Figure_2.jpeg)

Exponential suppression of bit-flips

R. Lescanne, Z. Leghtas et al., Nature Physics, 2020

![](_page_12_Figure_5.jpeg)

 $p_X \propto \exp(-2|\alpha|^2)$  $p_Z \propto \kappa_1 |\alpha|^2 t$ 

![](_page_12_Figure_7.jpeg)

Linear increase of phase-flip rate

### **Cat-qubits: exponential protection against bit-flips**

![](_page_13_Figure_1.jpeg)

## A fully protected qubit: strategies

![](_page_14_Picture_2.jpeg)

J. Guillaud and MM, PRX 9, 041053, 2019 AWS Blueprint: C. Chamberland et al., PRXQ 3, 010329, 2022

• Moderate noise bias regime: tailor surface code / use a 1st order correction against bit-flips

![](_page_14_Figure_5.jpeg)

J. Pablo Bonilla Ataides et al, Nat. Comm., 2021

Large noise bias regime ( $\bar{n} > 10 - 15$  photons): repetition code against phase-flips may be sufficient

![](_page_14_Picture_8.jpeg)

Ruiz et al., arXiv:2401.09541

![](_page_14_Picture_11.jpeg)

C. Chamberland et al, PRXQ, 2022

## **Bias-preserving gates**

#### **Definition:** A bias-preserving gate preserves the exponential suppression of bit-flips

• A bias-preserving **unitary** 

1Q 
$$\begin{cases} UZU^{\dagger} \propto Z \\ \text{Bias-preserving} : \{\pm X, \pm Y, Z(\theta)\} \\ \text{w Depolarizing } : U(2) \setminus \{\pm X, \pm Y, Z(\theta)\} \end{cases}$$

 $HZH^{\dagger} = X$ 

![](_page_15_Picture_5.jpeg)

![](_page_15_Picture_6.jpeg)

![](_page_16_Picture_0.jpeg)

• A bias-preserving implementation

![](_page_16_Figure_2.jpeg)

Bias-preserving continuous process

## **Bias-preserving gates**

![](_page_16_Figure_5.jpeg)

#### Robustness to systematic errors

## Scheme for universal quantum computation

![](_page_17_Figure_1.jpeg)

![](_page_17_Figure_3.jpeg)

![](_page_17_Picture_4.jpeg)

J. Guillaud and MM, Phys. Rev. X 9, 041053, 2019

![](_page_17_Picture_6.jpeg)

#### « Zeno » gates

#### **Quantum Zeno recipe \***

 $\sqrt{\kappa_2(\hat{a}^2 - \alpha^2)}$  and  $\hat{H}_Z \Rightarrow \epsilon \hat{H}_{eff}$  with  $\hat{H}_{eff} = P_\alpha \hat{H} P_\alpha$ 

![](_page_18_Picture_3.jpeg)

Same recipe for  $ZZ(\theta), ZZZ(\theta), \ldots$ 

 $P_{\alpha} = |\mathscr{C}_{\alpha}^{+}\rangle\langle\mathscr{C}_{\alpha}^{+}| + |\mathscr{C}_{\alpha}^{-}\rangle\langle\mathscr{C}_{\alpha}^{-}|$  $Z = |\mathscr{C}_{\alpha}^{+}\rangle\langle\mathscr{C}_{\alpha}^{-}| + |\mathscr{C}_{\alpha}^{-}\rangle\langle\mathscr{C}_{\alpha}^{+}|$ 

![](_page_18_Picture_6.jpeg)

M.M. et al, NJP 2014 S. Touzard et al, PRX 2018 Improved designs: R. Gautier et al, PRXQ 2023

![](_page_18_Picture_9.jpeg)

![](_page_18_Figure_10.jpeg)

### **Bias-preserving X gate through code deformation**

#### $X \approx |\alpha\rangle \langle -\alpha| + |-\alpha\rangle \langle \alpha|$

**Dissipative realization:** 

![](_page_19_Figure_4.jpeg)

![](_page_19_Figure_5.jpeg)

J. Guillaud and MM, PRX 9, 041053, 2019

![](_page_19_Picture_8.jpeg)

#### Quantum memory: overhead

# Master equation simulation for exponentially suppressed bit-flip errors

$$p_X^{CNOT} = (5.58\sqrt{\frac{\kappa_1}{\kappa_2}} + 1.68\frac{\kappa_1}{\kappa_2})e^{-2\bar{n}}$$
 \*

$$p_L = p_{Z_L} + p_{X_L}$$

$$p_{Z_L} = A(\frac{p}{p_{th}})^{\frac{d+1}{2}} \qquad p_{X_L} \le 2d(d-1)p_X^{CNOT}$$

\* C. Chamberland et al, PRXQ, 2022

![](_page_20_Figure_6.jpeg)

Simulations neglecting leakage\*\*

\*\* See F.M. Le Regent et al., Quantum, 2023 for leakage considerations.

![](_page_20_Figure_9.jpeg)

### Where are the experiments?

![](_page_21_Figure_1.jpeg)

New circuit design for non-parametric 3-wave mixing \*

![](_page_21_Figure_4.jpeg)

Similar bit-flip and phase-flip scaling

$$\eta = \frac{\kappa_1}{\kappa_2} = \frac{1}{150}$$

\* A. Marquet, B. Huard et al., arXiv:2307.06761

![](_page_21_Picture_8.jpeg)

- $\bullet$ stabilization.

![](_page_22_Picture_4.jpeg)

Quantum error correction and fault-tolerance: holy grail of quantum information processing

• Initial successful experiments of quantum error correction for a quantum memory but a tough path forward: larger chips by a factor 10 with better gate/measurement performances (a factor of 10).

Many possible shortcuts: protected qubits, better codes, low-level error correction, autonomous

![](_page_22_Figure_8.jpeg)

### **Physical implementation**

**Dissipative realization:** 

![](_page_23_Picture_3.jpeg)

![](_page_23_Picture_4.jpeg)

**Realization:** 

- 4-wave mixing + 2 pumps
- $\hat{H}_1 = g_2(\hat{d}^{\dagger}\hat{a}^2 + \mathbf{h.c.}) \qquad \hat{H}_2 = \epsilon_d(t)d^{\dagger} + \mathbf{h.c.}$

## **Bias-preserving CNOT gate (& Toffoli gate)**

**CNOT**  $\approx |\alpha\rangle\langle\alpha|\otimes I + |-\alpha\rangle\langle-\alpha|\otimes(|\alpha\rangle\langle-\alpha| + |-\alpha\rangle\langle\alpha|)$ 

Qubit a in  $|0\rangle \approx |\alpha\rangle \rightarrow \mathscr{D}[\hat{b}^2 - \alpha^2]$ 

Qubit a in  $|1\rangle \approx |-\alpha\rangle \rightarrow \mathscr{D}[\hat{b}^2 - (\alpha e^{i\pi t})^2]$ 

$$\omega_{p_1} = \omega_d - 2\omega_b \quad \text{We} \quad \text{Exp}$$

![](_page_24_Figure_5.jpeg)

erimental realization: TWM + Phase and amplitude modulation

 $(\hat{d}^{\dagger}\hat{b}^{2} + \mathbf{h.c.})$   $\hat{H}_{2} = g_{1}(t)\hat{d}^{\dagger}\hat{a} + \mathbf{h.c.}$   $\hat{H}_{3} = \epsilon_{2}(t)d^{\dagger} + \mathbf{h.c.}$ 

J. Guillaud and MM, PRX 9, 041053, 2019

![](_page_24_Picture_9.jpeg)

![](_page_24_Picture_10.jpeg)

![](_page_24_Picture_11.jpeg)